Satz von Lüroth

mathematischer Satz

Der Satz von Lüroth ist ein Resultat aus der Algebra. Er wurde von Jacob Lüroth im Jahre 1875 publiziert.[1]

Sei   eine rein transzendente Erweiterung des Körpers   vom Transzendenzgrad 1. Ist   ein Zwischenkörper, der von   verschieden ist, so ist   ebenfalls rein transzendent vom Transzendenzgrad 1. Insbesondere ist   isomorph zu  .

Ein allgemeingültiger Beweis dazu findet sich in [2].

Andere Formulierungen

Bearbeiten

Äquivalent kann man den Satz von Lüroth auch so formulieren: Sei   ein Körper und   der Körper der rationalen Funktionen über  , also der Quotientenkörper des Polynomrings  . Ist   ein Zwischenkörper, der von   verschieden ist, so ist   für ein Element   von  . Dieses Element   ist immer transzendent über  , wohingegen   immer algebraisch über   ist.

Eine weitere äquivalente Formulierung in der Sprache der algebraischen Geometrie besagt, dass unirationale Kurven rational sind.

Lüroth-Problem

Bearbeiten

Die Frage, ob der Satz von Lüroth auch für Körper vom Transzendenzgrad größer als Eins gilt, ist als Lüroth-Problem bekannt. Im Allgemeinen ist das nicht der Fall. Ein Überblick über Teilergebnisse und Gegenbeispiele findet sich in dem unten zitierten Buch Basic Algebra II von Nathan Jacobson.[3]

Einzelnachweise

Bearbeiten
  1. J. Lüroth: Beweis eines Satzes über rationale Curven, Math. Ann. 9 (1875), 163–165.
  2. "Algebraische Theorie der Körper" (1910) von Ernst Steinitz (Seite 302).
  3. N. Jacobson: Basic Algebra II (2nd. ed.), W. H. Freeman, San Francisco, 1989, Sec. 8.14, pp. 520–525