Parsevalsche Gleichung

mathematischer Satz

Die parsevalsche Gleichung (nach Marc-Antoine Parseval), auch bekannt als Abgeschlossenheitsrelation, aus dem Gebiet der Funktionalanalysis ist die allgemeine Form des Satzes des Pythagoras für Innenprodukträume. Zugleich ist sie wichtig für Orthogonalzerlegungen in diesen Räumen, insbesondere für die verallgemeinerte Fouriertransformation.

Formulierung

Bearbeiten

Es seien ein Prähilbertraum   und Orthonormalsystem   gegeben – d. h. alle Elemente von   sind zueinander orthogonal und haben zudem die Norm  .   ist genau dann ein vollständiges Orthonormalsystem (Orthonormalbasis) von  , wenn für alle   die parsevalsche Gleichung

 

erfüllt ist. Hierbei bezeichnet   das Innenprodukt und   die zugehörige Norm von  .

Ist   ein unvollständiges Orthonormalsystem, so gilt immerhin noch die besselsche Ungleichung.

Anwendungen

Bearbeiten

Die Gleichung hat die physikalische Aussage, dass die Energie eines Signals im Impulsraum betrachtet mit der Energie des Signals im Ortsraum identisch ist.

Eine andere Formulierung der Gleichung ist die Aussage, dass die L2-Norm einer Funktion gleich der  - beziehungsweise  -Norm der Koeffizienten der Fourierreihe dieser Funktion ist. Die Verallgemeinerung der parsevalschen Gleichung auf die Fouriertransformation ist der Satz von Plancherel.

Spezialfall der Fourierreihe

Bearbeiten

Falls   die Fourierkoeffizienten der (reellen) Fourierreihenentwicklung der  -periodischen reellwertigen Funktion   sind, das heißt

 ,

dann gilt die Gleichung

 

Diese Identität ist ein Spezialfall der oben beschriebenen allgemeinen parsevalschen Gleichung, wenn man als Orthonormalsystem die trigonometrischen Funktionen  ,  , nimmt, mit dem Skalarprodukt

 .

Satz von Plancherel

Bearbeiten

Der parsevalschen Gleichung für die Fourierreihe entspricht eine Identität der Fouriertransformation, die gemeinhin als Satz von Plancherel bezeichnet wird:

Falls   die Fouriertransformierte von   ist, dann gilt die Gleichung

 

Die Fouriertransformation ist damit eine Isometrie im Hilbertraum L2. Diese Gleichung entspricht der parsevalschen, da der Fouriertransformation das Orthogonalsystem der Hermiteschen Funktionen zugeordnet ist.

Literatur

Bearbeiten